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1. Introduction

This paper is concerned with the nonlinear stability of numerical schemes for the equations of ideal magnetohydrody-
namics (MHD). Ideal MHD is a fluid model of a plasma with no resistivity and no net charge. As a model it has been very
successful in describing astrophysical plasmas and space physics. The governing equations are a system of conservation laws
for the densities of mass p, linear momentum pu, energy E and magnetic field B. They can be written as (letting I; denote the
3 x 3 identity matrix)

P+ V- (pu) =0,
1
(pu), + V- (pu@u + <p+§|B\2>13—B®B):O,

E[+V-KE+p+%|B\2>uf(B-u)B} =0, (1.1)

B.+V-Bou-u®B)=0,
V-B=0,

with an internal energy e given by E = pe + 1 pu® + %BZ, and the pressure given by the equation of state p = p(p, e). The sys-
tem fits the generic form of a conservation law U; + V - F(U) = 0, except for the restriction on V - B. However, if this restric-
tion is satisfied at the initial time t = 0O, it automatically holds at later times t > O for the exact solution. Since solutions
generally have shocks and contact discontinuities, one should look for weak solutions, and augment the system with the en-
tropy inequality

(P§(s)): + V- (pug(s)) <0, (1.2)

where ¢ is any smooth convex and nonincreasing function, and the entropy s is defined by
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de +pd<%> =Tds, (1.3)

for some temperature T(p, e) > 0. The entropy inequality means that we apply the second law of thermodynamics to exclude
unphysical shock waves.
The ideal MHD system is hyperbolic provided

(%P
b= (ap>s >0, (]4)

where the subscript s means that the partial derivative is taken with s constant. We also assume that p(p,e) > 0 as long as
p > 0and e > 0. Hence, a natural stability criterion for a numerical scheme is that p, p and e should remain positive numbers,
if they are initially. Violations of this basically lead to the breakdown of the simulation. It is sufficient to have p > 0 and
pe > 0, or equivalently
1 5, 1.,
p>0 E—->pu*—--B" >0 (1.5)
2 2
These inequalities define a convex set in the space of conserved variables U = (p, pu, E, B). Stronger criteria than positive
internal energy are given by imposing discrete versions of the entropy inequality (1.2), or at least a sharp lower bound on
s. A third important criterion is to avoid spurious oscillations near sharp gradients.
Consider a system of conservation laws in one spatial dimension (we consider the x-dimension) U; + F(U), = 0. The
numerical schemes we will consider are of the finite volume type
At
Sl = Uy -5 (fﬂ% - fi,%), (1.6)
where U; are averages over intervals (or 'cells’) of length h indexed by i at some time t, and the operator S, updates the cell
averages to time t + At. The numerical fluxes F are evaluated at the cell interfaces, hence U is conserved and we say the
scheme is conservative. First order accurate schemes can be given by

Fiyy = F (Ui, Uina). (1.7)

For MHD several such fluxes are in use, and they are typically given by an approximate Riemann solver (see [7,26,19]). We
will use the 3-wave approximate Riemann solver of [8,9], denoted HLL3R. This numerical flux guarantees a priori that the
scheme preserves the positivity of p and e, and that a discrete version of the entropy inequality holds. Other fluxes with sim-
ilar properties are given in [18,23,17,20,21] among others. The mathematical results of this paper are valid for any numerical
flux F ensuring the positivity of (1.6) and (1.7).

These numerical fluxes are building blocks in higher order accurate schemes. The other basic building blocks are typically
the spatial reconstruction of states based on the cell averages, and a time integration scheme. The stability properties of the
first order schemes are not automatically inherited by the higher order schemes. For one thing, some restriction on the
reconstructed states must be imposed to control spurious oscillations. This is the basis of TVD schemes and WENO schemes
(see [26,19]). It is technically complicated to prove a discrete entropy inequality for the higher order schemes ([5,13]), and in
practice it seems sufficient to have this property for the first order scheme. In any case, TVD and WENO type schemes will
revert more or less to the first order scheme near a shock. Finally, even with these considerations made, the positivity prop-
erty may fail to hold, but, as demonstrated in [24,3,4], positivity can be retained by further restricting the reconstructed
states. This idea is carried out here for a second order accurate scheme for ideal MHD. The case of the Euler equations follows
by setting B = 0.

The extension to more than one space dimension will be performed in a straightforward manner here, by employing uni-
form Cartesian grids. Stability results from one dimension tend to carry over fairly easily, except that smaller timesteps may
be required. For ideal MHD however, there is an obstacle in generalising results from one dimension. The restriction
V -B =0 implies that the longitudinal component of B, B,, must be constant for one-dimensional data. When one-dimen-
sional schemes are employed in a multidimensional setting, violations of this constraint have to be somehow dealt with.
We will use the following approach of [25], consisting of modifying the evolution equation for B to

B,+V Bou-u®B)—uV.B=0. (1.8)

This yields a version of the Powell system for MHD. In its original version, also the momentum and energy equations were
modified. The HLL3R solver of [8,9] has the useful property of being consistent, positive, and to satisfy a discrete entropy
inequality also for this more general system. Generalisation of other interesting approximate Riemann solvers to allow Pow-
ell terms is possible ([16]). It should be noted that the nonconservative term may lead to errors of a few percent when strong
shocks are present, as demonstrated in [27]. An alternative to using (1.8) is the staggered mesh (or constrained transport)
approach (reviewed in [27]), which in one dimension essentially means evaluating B, at the cell interface instead of as a cell
average. It is not clear, as far as we know, whether this leads to provably positive schemes. However, it has the advantage of
guaranteeing that V - B = 0 to approximation order in smooth regions. We will not attempt to dampen eventual spurious
values of V -B in our test runs, since the role of such methods in numerical stability is unclear. We remark though, that
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our methods are compatible with the projection method of [10], and the parabolic cleaning method of [22,14]. Eq. (1.8) im-
plies that

(V-B),+V.(uV-B)=0, (1.9)
hence errors in V - B should be advected with the flow. This may be regarded as a form of cleaning of errors in V - B.

This paper is organised in the following way: Next, we present the underlying MUSCL-Hancock scheme. In Section 3 we
derive modifications that will ensure that this scheme is positive in one dimension (i.e. when B, is constant). In Section 4 we
extend the positivity result to the multidimensional case (i.e. with variable B,). Sections 3 and 4 both end with relevant
numerical examples. Section 5 contains the main conclusions.

2. The MUSCL-Hancock method

We now detail the conservative MUSCL-Hancock scheme, introduced in [28] (see also [26]), which generalises a first order
finite volume scheme (1.6) to second order accuracy. Later a nonconservative version will be presented. Let W denote the
primitive variables (p,u,B,p). For smooth data, the equations can be rewritten as W, + A(W)W, = 0 for a matrix A(W).
The MUSCL-Hancock schemes goes as follows.

(1) Evaluate discrete differences dW;. For oscillation control, we use the MC-limiter (monotonised central limiter), so for
each component of W; we take

AW, = gymin (2AWir = Wi Wer = Wil 20Wi = W) 1)

with
1, Wi —-W;>0, W, —-W;1>0,

gi={ -1, Wi —-W;<0, W;-Wy;<0, (2.2)
0, otherwise.

(2) Limit dW; to ensure positivity as outlined below. This gives new differences DW,.
(3) Prediction step: Evaluate

WE=W, — %A(WJDW,. (2.3)
(4) Evaluate the cell edge values

Wy :Wf—%DWi, wi :Wf-{—%DW,—. (2.4)
(5) Use the cell edge values as input to the numerical flux in the conservative scheme.

Sl = Ui = (F (U] Up) = (UL, U,) 25

The positivity result we derive next, does not depend on our specific choice (2.1) of gradient limiter. The spatial recon-
struction step (2.4) may be replaced with a conservative reconstruction (i.e. such that (U~ + U") = U°) as follows

-
pi:pCi%Dp, ui:ufiz%cuu, Bi:BCi%DB (2.6)
b1 P o 1,

assuming the ideal gas law p = (y — 1) pe. We will refer to this as the U-reconstruction, and (2.4) as the W-reconstruction. A
convenient third option is what we will call the p-reconstruction, where we take a conservative slope for the momentum, but
set
+ (o 1
p =p ijDP- (2.8)
In [4] the positivity of a MUSCL-Hancock scheme is analysed with the Euler equations as an example. The prediction step
(2.3) was in [4] replaced with

. At . .
U = Ui — 5 (FU;) — F(U; ). (2.9)

Using primitive variables as the basis for reconstructing the states was recommended for example in [12]. It ensures that
material contact discontinuities are reproduced exactly. Alternatively, one can use that the primitive form
W + A(W)W, = 0 may be diagonalised as

(R + Z(R), =0, j=12,...4d, (2.10)
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with W; = X;R;. The matrix X; is given by the eigenvectors X{: of A(W;). The reconstructed gradients may then be evaluated
using the relation DW; = X;DR;, given gradients DR;, and we get

At | 1 At 1
Wi = XiRF = X; (Ri - ﬁAR,‘ + EDR,-> =W,; - ﬁA(W,-)DW,- + EDWi’ (2.11)
where / is the diagonal matrix having the eigenvalues /# as entries. The estimates we need to ensure positivity are most con-
veniently stated for DW, but they are also valid for the characteristic reconstruction (2.11). For ideal MHD the characteristic
decomposition is costly and complicated due to the nonstrict hyperbolicity, so we will evaluate dW directly from (2.1) in our
examples.

3. Positivity analysis in one spatial dimension

We first derive a positive version of the conservative MUSCL-Hancock scheme (2.5). For convenience we restrict ourselves
to the case that y — 1 = p/(pe) can be considered fixed, but this restriction is easily relaxed. Our starting point is the follow-
ing proposition, essentially due to [3]. We will say that a scheme S,; preserves an invariant region Q if

UeQ Vi = S\UieQ Vi (3.1)
This typically only holds under a CFL condition At < T(U)h where 7 is a function of the sequence of cell averages {U;};.

Proposition 3.1. The MUSCL-Hancock scheme (2.5) preserves the convex invariant region Q if
(i) The scheme (1.6) and (1.7) preserves Q for all At < t(U;)h, and
(ii) For some o € (0,3]
UfeQ, UfeQ and Uf:ljﬁ(U—a(Uf—s-U{))eQ, (3.2)
and At < ot(U)h, where U is the sequence
{ Ui Ui UL U UL U U U Uy

The optimal CFL condition is given by o = 1. This means we need to take about three times smaller time steps compared to
the first order scheme. Also, the CFL condition is implicitly defined. In practice we find that our schemes work well at much
higher CFL numbers than theoretically accounted for. The practical significance of the result is to provide bounds on the
reconstructed values U* rather than on At.

Proof. The method can be written as a convex combination of first order schemes. Let F~ = F (U ,U;) and
F* = F(Uf,U,), which allows us to drop the index i for readability. Using the definition of U*, we get

At

SA[U:U—W(PH»—PP)
_ At _ _ . At . _ At .
=aU _F(}—(U LU —F )+(1—2fx)U —W(}‘(U,U*)—F(U ,U*))+aU*—F(F*—]-‘(U ,U*)).
We rewrite this as
SacU = oc<U’ —%(}‘(U’,U*) —F’)) +(1-20) (U* —ﬁ(}‘(U*,U*) — ]-‘(U’,U*)))
+ oc(U+ — %(F+ — F(U, U*)))‘

Each line is a first order update of a cell average with time step sizes At/a and At/(1 — 2«). This means that, provided At is
chosen as prescribed, SyU is a convex combination of states in Q. The result then follows by the convexity of Q. O

Remark 1. This Proposition is only valid for conservative schemes. In the case of multidimensional MHD, the Powell terms
result in a nonconservative flux in place of . We will generalise to the Powell system in the next section.

3.1. Implementation: positive mass density
We now demonstrate how Proposition 3.1 can be used. The index i is dropped throughout this section for readability.

Hence p, U etc. is to be understood as generic cell averages p;, U; etc. We choose the optimal o = 1/3. First we consider pos-
itivity of mass density. The prediction step for p is

At
p° = p — 5y (uDp + pDu). (3.3)
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According to Proposition 3.1, it is enough to have:
. At

min(p", p*) = p =55 (uDp + pDu) — 5 IDp\ >0, 3.4
and

pr= ,0+2 (qu+pDu) (3.5)
This yields the sufficient condition that

At 1
p 5 (ulIDp| + piDul) = 5 1Dp] > 0. (3.6)

Set [Dp| < lp and |Du| < I A[, for some I to be determined. Assuming the reasonable CFL condition |u| < &, we end up with /=1
so |Dp| < 5 and |Du| < ;.

3.2. Implementation: positive pressure

Ensuring that pressure also stays positive is more involved. Define AW = 2L A(W)DW, so that

We=W — AW. (3.7)
Hence, AW is given as
At
Ap = 5h (uDp + pDu) (3.8)
At Dp+B, DB,
A= Zh( ubu +f> (39)
At B.DB,
au =5 <uD -2 ) (3.10)
AB, =0 (3.11)
AB, = Th(uDBL +DuB, — B,Du,) (3.12)
Ap :?—h(querpDu). (3.13)

To separate between longitudinal and transversal components, we introduced here the notation u = (u,u, ) and B = (B,,B, ).
Hence u, and B, are vectors in the y-z plane. Since we are in one dimension we assumed B, to be constant. Proposition 3.1
motivates the following estimates:

Proposition 3.2. The W-reconstruction satisfies the conditions of Proposition 3.1 with o = 1 if

1 Ax D
IDp| < 50 [Du| < T+ AL IDp| < T+ (3.14)
and
3”/)* (Au)® + 3(AB) + . ((p +DZ >Du2 +DB2> +%Dpu Au-— <Z + l)DpDu Au <Pt 2?”. (3.15)
The p-reconstruction satisfies the conditions of Proposition 3.1 with o =1 if (3.14) holds and
pp 2 2, 1, n 2, _P+2Ap
37(Au) +3(AB) +4_1(’0 Du” + DB )<ﬁ' (3.16)
For the U-reconstruction, the conditions of Proposition 3.1 with o =1 are satisfied if
1 Ax 1, ch 2. _DP°—1|Dp|
and
C
32 (Auy? 4 3(AB) < 24P (3.18)

P y—1
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Proof. Consider the W-reconstruction. The conditions (3.14) imply that p* > 0,p* > 0 and p* > 0 by arguments like those
given in Section 3.1. Note that they also ensure that p + 2Ap > 0, and that p¢ > 0.

It remains to check that (pe)" > 0, or in terms of conserved quantities, that

S (V)0 e
3E—(E"+E )*5?75(3) > 0. (3.19)
Note that
(pu)" =3pu — <2pfuf + %DpDu) =pu+2p‘Au— %DpDu. (3.20)
Hence, we get
1w ) 1 5 () o e Dp*, 1. o pDp
2 =5pu +2 o (Au)” + 2p‘u Au+8p*Du szu Du > AuDu. (3.21)

For the calculation of E" + E~, we need

PR L = ((uf)z +%(Du)2) + Dput - Du

2
=p° <u2 + (Au)® - 2u - Au + ‘ll (Du)2> +Dp(u— Au) - Du. (3.22)
Also,
1 500 15, 2
E(B ) = EB +2(AB)” + 2B - AB, (3.23)
and
1 00 1 5 0 a2 1 2 2 2 1 5
j(B) +j(B) = (B +Z(DB) =B"+AB —2B-AB+ZDB. (3.24)
Plugging this into (3.19), the positivity of (pe)” follows. We used the relation
e o) _Lpp
+2—=3"—. 3.25
p o I (3:25)
The results for the p- and U- reconstructions follow similarly. For these two cases we have
(pu)" =3pu —2pU° = p*u+ 2p°Au, (3.26)
T(pw ) 1 5 L (p) 02 ¢
PR 72pu +2 I (Au)” + 2pu - Au, (3.27)
1++2 1772_cc2 p_p+ 2
S P (U) 45 p7 ()" = pt(u)” + 40 (Dw)”. O (3.28)

Remark 1. Taking o = 1 replaces (3.15) with the slightly simpler

C 2
ppf (Au)® + (AB)? +% ((pc + gﬁ *>Du2 + DB2> 4D 2 AP puAu < pytAlp . (3.29)

Remark 2. The proof does not rely on any explicit formula for AW. By setting AW = 0, a positive semi-discrete MUSCL
scheme follows as a special case. An appropriate Runge-Kutta type time discretisation, such as Heun’s method, will yield
a positive scheme that is second order in time and space.

Taking DW = 0, which means that we are back to the first order scheme, satisfies the condition. Noting that, the next step
is to find a sharper choice of DW. Let us first consider the W-reconstruction. The algorithm’s outline is as follows: (i) Ensure
that (3.14) holds, then (ii) Ensure that (3.15) holds. Point (ii) requires some further estimation.

Define

byl

(o 2 3C
L(dW) =3 ﬁf (Au)? + 3(AB)? +% <<;’)C + g—;) Du? + DB2> + % (Dpu - Au), — (% + 1) (DpDu - Au)_ (3.30)

with

B} At ) ~
p°=p—5p(pDu)_+uDp)_) > p*, p"=3p—2p°<p". (3.31)
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Also, define

pe(dw) :p+2%((u§pz,1+ yp(du) ) (332)

Then it is sufficient for (3.15) to have L(DW) < pe(DW). Using this, we end up with the following algorithm for the
reconstruction:

(1) Compute dW with a standard limiting procedure such as (2.1),
(2) Limit dW to ensure (3.14),
(3) Compute L(dW), pe(dW), and

dw pe(dw)
flaw) = max(L(dW), pe(dW))

(4) Set DW = f(dW)dW, and AW — f(dW)A(W)dW,
(5) Compute W and W*.

(3.33)

The validity of this algorithm is most easily seen as follows: The right hand side pe is nonincreasing in the absolute value
of each component of dW. For the left hand side we have L(édW) < ¢2L(dW) for all ¢ e [0, 1]. This implies

L(DW) < f(dW)*L(dW) < pe(dW) < pe? (DW). (3.34)

For the U- and p-reconstructions the algorithm is essentially the same.

For comparison purposes we also set up a scheme such that U* are positive, but with no guarantees for U*. This scheme is
not provably positive, but is based on a natural and common design principle. For the W- and p-reconstructions it is suffi-
cient to have

2 2Ax 2p
IDp| < 3P [Du| < 2+ AL IDp| < 247 (3.35)
For the U-reconstruction, we also need
1 c 2 2 pc - % ‘Dp‘
g(p Dw? + DB ) <A (3.36)

3.3. Numerical tests in one spatial dimension

We now have schemes ready to be tested on hydrodynamics and one-dimensional MHD. Let us denote the basic MUSCL-
Hancock schemes with W, p and U reconstructions MHW, MHp and MHU, respectively. The positive versions will be denoted
MHWP, MHpP and MHUP. We also consider a first order scheme G1 (with DW = 0), and schemes which guarantee the pos-
itivity of the cell edge values U*, but not positivity in general. The different schemes are summarised in Table 1. The tests
focus on specific issues of the new positive schemes, and we refer to [26] for more basic tests of the MUSCL-Hancock scheme.
First, we fix some parameters. The time step is chosen according to the following formula

h
max (Slilp (u,- +%>,A> 4

where A denotes the maximum over all cell interfaces of the Riemann solver signal velocities of the previous time step (For
the first time step, the previous time step is defined as one with At = 0). We set C,z = 0.9, which is of more practical interest
than the smaller theoretical value. For each of the limiting inequalities (3.14)-(3.17) and (3.18), we multiply the right hand
sides with 0.9 to avoid marginality. The gas is assumed to be ideal in all examples, so the equation of state is (y — 1)pe = p for
a fixed y € (1,2].

At = Cy (3.37)

Table 1
Summary of the schemes considered in one-dimensional tests.
W-rec. p-rec. U-rec. First order
Basic scheme MHW MHp MHU
Positive cell edge values MHW* MHp* MHU*

Positive scheme MHWP MHpP MHUP G1
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3.3.1. High mach shear flow
Our first test, consisting of an advected shear flow, was set up to investigate the accuracy of the positive schemes com-
pared to the basic schemes. Take p=1,p=1/y,B=0,y=5/3 and

u = (50,A(sin27x + 0.15sin207x),0), A > 0. (3.38)

The strategy was to increase the free parameter A until the nonpositive schemes are marginally stable. We first increased A
until MHW was not able to advect the flow for one period (time t = 0.02). The resolution was fixed to h = 0.01, and boundary
conditions were periodic. MHW produced a solution at A = 15.5, while it terminated due to negative pressure values at
A = 15.6 and larger values we tested. Fig. 3.1 compares MHW and MHWP at A = 15.5. The G1 result is also plotted to show
how especially the smaller scale is more smeared out. The error with respect to the exact solution in shear velocity ey is
conveniently measured as the normalised L'-error vey = Zilvi — v(0,x;)|h/A. For MHWP the error was 0.0432, while for
MHW it was 0.0307. It is not surprising that MHWP gave a larger error in this critical case, but it was still much less than
the error of G1, which was 0.0913.

We performed the same test with the scheme given by (3.35), denoted MHW*. This scheme produced negative pressures
at A = 23.5 and higher, hence having positive cell edge states only increased the marginal A with about 50%. At A =23.4
MHWP produced v, = 0.0614, while MHW= produced v, = 0.0480.

The same type of testing was performed on the other schemes. First, a critical amplitude A = A was found, and then the
positive scheme was compared to its nonpositive counterpart. the results are summarised in Table 2. We observe the same
tendencies with all schemes, except that MHU®, given by (3.35) and (3.36), appeared very stable on this case. The scheme
MHp™, given by (3.35), had only about 10% better stability range than MHp.

Tables 3 and 4 show errors from refinements studies with varying A. At A= 1 we noted little difference between the
schemes, so only the results from MHWP are shown. At A = 15.5 MHW and MHWP still converge at about the same rate with
the errors of MHWP slightly larger. Convergence was slower than at A = 1. The next step is to compare the positive schemes
MH-P. Fig. 3.4 compares the errors of these schemes at A = 25, revealing that MHUP is somewhat less accurate. In Fig. 3.2,
showing the output of different schemes for a fixed resolution, MHWP may be seen to best reproduce the shape of the shear
wave, especially compared to MHUP. Since MHUP is also fairly complicated to calculate, we focus on MHWP and MHpP from
here onwards.

The main conclusions from this test are that the limiting prescribed by Proposition 3.2 significantly improves the stability
of the basic MUSCL-Hancock schemes, while maintaining the accuracy of the original schemes. We also demonstrated that
simply having the cell edges U* positive is an insufficient stability criterion, at least for the W- and p-reconstructions.

3.3.2. Brio-Wu shock tube

It is also important to demonstrate that the new schemes can resolve shocks and contact discontinuities well. We con-
sider shock tube initial data from [11] that has become a standard test case. The initial data are given by U = U, for
x < 0.5, and U = U, for x > 0.5, with y = 2 and

pl:17 ulzov Bl:(075/170)7 plzlv
p,—0.125, u, =0, B, =(0.75-1,0), p,=0.1.

All the second order schemes produced very similar results on this case. Since the TVD-type reconstruction used as basis for
the second order schemes already limits the gradients strongly near discontinuities, it is not surprising that the extra limiting

0.4 0.5

X

Fig. 3.1. Shear test for MHW with A = 15.5 at t = 0.02. The results are similar for 0.5 < x < 1. At higher A, MHW failed.
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The nonpositive schemes were tested at the values of A = A that they were marginally stable, and the error in ¥ compared to their positive counterparts at the
same Aqie. For MHU* we could not find an A, S0 A = 50 was chosen as a convenient value.

MHW MHWP MHp MHpP MHU MHUP
Acrie 15.5 10.1 3.6
100 Verr 3.07 4.32 3.02 3.31 2.89 2.93
MHW= MHWP MHp* MHpP MHU* MHUP
At 234 11.2 50"
100 Verr 4.80 6.14 3.14 3.49 11.1 11.8
Table 3
Shear test: errors given as 1007, at t = 0.02.
h MHWP, A=1 MHW A =155 MHWP, A=15.5
0.02 7.32 7.82 8.51
0.01 244 3.07 4.32
0.05 0.64 1.09 1.27
0.025 0.19 0.39 0.48
Table 4
Shear test: errors given as 100v,, at A = 25 for different schemes at t = 0.02. All the basic schemes MHU, MHp and MHW failed at this A.
h MHUP MHpP MHWP
0.02 10.2 9.30 8.91
0.01 9.79 6.31 5.82
0.05 5.27 2.99 2.33
0.025 1.84 1.18 0.98

0.2
X

0.4

Fig. 3.2. Shear test with A = 25 at t = 0.02 with h = 0.005. The results are similar for 0.5 < x < 1. All the basic schemes MHU, MHp and MHW failed at this

A-value.

applied in the positive schemes has little influence in this problem. Data from MHWP and G1 are shown in Fig. 3.3. Note the

strong improvement to the first order scheme G1.

3.3.3. Vacuum shock tube test

This test is from [9] (see also [6,7] for hydrodynamics), where the ability of the flux HLL3R to handle vacuum data was
demonstrated. We show here that our approach extends this ability to higher order schemes. The initial data are given by

U=U, for x < 0.5, and U = U, for x > 0.5, with y = 2 and

=0, w=0, B=0 p=0

pr:17 uTZO-: BT:(07170)7

p, =0.5.



8618 K. Waagan/Journal of Computational Physics 228 (2009) 8609-8626
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---G1

0.4

031

0.2r

Fig. 3.3. Brio-Wu shock tube test as computed by G1 and MHWP. The resolution was h = 0.005, and p and B, are plotted at t = 0.2. The reference solution
results from a computation with h = 10~* using the first order scheme G1.

Positivity is critical for this problem. We specify that in vacuum cells DW was set to zero. Fig. 3.4 shows results by MHWP
and G1. A similar undershoot at the rarefaction tail was also reported in [7] for a MUSCL scheme. The density profile from
MHpP is not plotted as it is indiscernible from that of MHWP. The base scheme MHp failed here due to a negative pressure
value. The MHW run stagnated due to a very high sound speed at the interface with the vacuum.

3.3.4. Low plasma p shock tube test
This is another test from [9]. It consists of rarefactions into a region of low plasma g (defined as g = ZB—’;). The initial data are
given by U = U, for x < 0.5, and U = U, for x > 0.5, with y = 5/3 and

plzl) ul:(_ﬂ7030)7 Bl:(170'5’0)7 pl:045
p, =1, w=(i,0,0), B —(1,050), p,—045.

We first fixed the velocity at it = 3.1. There was little difference between the second order schemes here. MHWP and MHpP
are observed to converge towards the reference solution in Fig. 3.5. The two schemes do equally well. The reference solution
was computed using the first order scheme G1 at high resolution.

Although using a CFL-number of 0.9 worked well in all the test cases, it is interesting to see whether it makes a difference
to follow the theoretical suggestion of using one third of the optimal value. From Fig. 3.6 it seems that taking 0.3 as the CFL-
number gives a slight improvement, but the difference is too marginal to justify the increased computational time.

Finally, we considered the limits of the stability ranges of the nonpositive schemes MHW and MHp with respect to the
velocity ©1. We computed until the time t =1 (i1 + 1.41)"' (where 1.41 approximates the fast wave speed) at h = 0.01. MHW

1 0.18—— ‘ ‘
091 1 0.16}
08f 1 0.141
orr 1 012}
0.6
0.1f I
Q 05F 1 3
0.08} Exact
041 1 - MHWP
0.06F
0.3fF
o2k | 0.04
01t 1 0.02¢ -
0 I ‘ ‘ ‘
03 034 036 038 0.4 042 044

X

Fig. 3.4. Vacuum test as computed by G1 and MHWP. The resolution was h = 0.005, and p is plotted at t = 0.1. The right hand plot zooms in on the
rarefaction tail.
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t=0.15, h=0.01 t=0.15, h=0.005 t=0.15, h=0.0025
107" 10" 10 /
——— MHpP
o~ N N MHWP
g . 2 . g . ——— G highres.
& 10 & 10 & 10
iy & &
1073 107° 1072
-02 0 02 04 06 08 1 1.2 -02 0 02 04 06 08 1 1.2
X X

-02 0 02 04 06 08 1 1.2
X
Fig. 3.5. Refinement study of low p test. The plots show plasma f = %‘; at time t = 0.15, and resolutions are h = 0.01, h = 0.005, h = 0.0025. The reference
solution is computed by G1 at h =2 x 107,

B:

2p/B>

B=

MHWP h=10"3 - = =MHp h=1072
- 1072 _
MHW h=10 © MHpP h=102
. _an~2 =
107 MHWP h=10 107 —— MHpP h=10"% | .
0 02 04 06 08 1 0 0.2
X

Fig. 3.7. Comparison of positive and nonpositive schemes on low f test. Plasma f8 = 2 is plotted. Left: &i = 10.4, right: &t = 14.2.

failed for &t > 10.4 while MHp ran until &t > 14.2. The results are shown in Fig. 3.7, where some differences in the low p re-
gions are visible. Somewhat surprisingly, the positive schemes reach the lowest g values, but MHW does slightly better than
MHWP in some other parts of the solution.

4. Extension to multi-dimensions

To do multidimensional calculations, we need to be able to handle a varying B,. A positive Riemann solver for this setting
is given in [9], where the following modified equation for B is solved
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B: + (uB — B,u), —u(B,), = 0. (4.1)
The resulting scheme is not conservative, hence the proof of Proposition 3.1 is not valid. We can write the scheme as
At
Sacli = Ui = 1 (FilUi, Upa) = Fr(Ui, Up)). (4.2)

Incorporating this nonconservative numerical flux blindly into the MUSCL-Hancock scheme is not consistent with (4.1), as
the source contribution is of vanishing size for smooth data. Also, this approach turns out to not be very stable. We will in-
stead consider schemes of the form

At _ _

SaUi =U; — Ax (F(U,Uzq) = Fr (U4, U7)) — ALS;. (4.3)
Extending nonconservative schemes to higher order in this manner is carried out in [1,7] for shallow water equations. For
systems with a full energy equation, ensuring that positivity properties of first order schemes carry over requires more care.
In order for the proof of Proposition 3.1 to hold, we need to take (dropping the index i) S = S; given by

« . S o 1

Sy =—(F(U,U") + F(U,U") = F(U,U") + F(U", U ))E'

This gives a positive and consistent discretisation, but the source term is not necessarily second order accurate. The source S,
may be computed as follows using the HLL3R solver. Note that we only get a source contribution for the magnetic field B, so
we write S = (0,0,0,0,0,S?).

(4.4)

(1) Find U,U* and U™.
(2) Calculate a signal velocity ¢ for the interior problems by taking the maximum values allowed by the CFL condition:
Ax

o0=Cq AL (4.5)
(3) Calculate intermediate values of u at interior Riemann problems, denoted ug, given by
_ p(u+ou +p(c—u)u +1I" —II"
us = _ _ . El
p-(u+0)+p(0—u)
L pw+ow+pi(c—uut +1I — 10" 46
s = pr(u +0) + pt(c —u*) ’ (4.6)
with
1
m= (p + 5132 — (By)?, —B,,BL>. (4.7)
(4) Finally,
B, — B, B —B:
ST=ug g St (4.8)

The algorithm is more efficient than a full evaluation of the Riemann problems due to the simplicity of (4.5) and that we
only need to know ug. The consistency of S® with the source term u(B,), may seen from setting ug = u® + O(h), yielding

DB,
h

In most cases, we expect that the source term

S—u +0(h). (4.9)

h

may be used instead of S; to ensure efficiency and second order accuracy. The second order accuracy may be seen from
rewriting the scheme so that the source is given by the more standard form

S, — <o,o,o,o,o,uf DB”), (4.10)

1 1 _ _
E“f(B:,i — B4 Jug=0 + 7 Wi (Brii = Bri)uscos

up to second order. The source discretisations S; and S, can be hybridised to also ensure positivity as follows.

(1) Pick some small energy value pe;, such as

p_ei = ,umin((pe)i_], (pe)ﬂ (Pe)m)’ ne (0’ 1] (411)
(2) Calculate the candidate U using the source term S,;

~ At _ _

U=U —— (}‘I(U,-*, Um) — }‘r(U,t], U; )) — AtS,;. (4.12)

Ax
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(3) Calculate

&= (1 ——((pee)f)+> . (4.13)
pe ).

(4) Set

SacUi = Uy + &AL(S1; — S2.)- (4.14)
We use p =1
In the astrophysical fluid dynamics code FLASH ([15]),! the Powell term is included in the discrete form

_ _ 1
Sei = (0.0,0,0,0.[(B), + (By).y — (B),— (B1) ] ) (415)

and the terms S; and S, are ignored (In fact, including them would violate second order accuracy). This scheme can also be
made positive by using the hybridisation procedure described above.
Finally, for consistency AW should be modified to

At
Ap = >h (uDp + pDu), (4.16)
au="2L (upy PP B. DB, +BDBy) (4.17)
2h 0
At B.DB, + B, DB
pu =5 (uDul _ %> (4.18)
At
AB, = 5 DB, (4.19)
AB, = %ﬁ (uDB, + DuB, — B,Du,), (4.20)
At
Ap = 5 (uDp +7pDu). (4.21)

Other than that, the limiting inequalities of Proposition 3.2 and its corresponding algorithm remain unchanged.
4.1. Semidiscrete version

The semidiscrete case (AW = 0) allows a simplification which is worth stepping aside to point out. The W-reconstruction
can be made positive in multi-dimensions if the following source term is added to B

S— <u + M) DB, (4.22)
C+¢Cr h

with the relaxation speeds

_ _ AX _ _ AX

a=p (Cagrru ) cmp(Car-ut). (4.23)
This result comes from modifying the proof of Proposition 3.1 by considering U** and U*~ such that

4U=U +U" +U" +U", (4.24)
with B* = B, p** = p*, (pu)™ = (pu)* and

s _ o (L L o ioe) +(Youtspe) )+ tmey_ Llpg
E _2(2pu + pe ~3 2pu +pe| + 2pu + pe +2(B) —SDB. (4.25)

This modification of the argument reduces the number of Riemann problems with a source term contribution from 2 to 1.
The limiting inequalities that follow are

1 1
p—4IDp| >0, p—[Dp| >0, (4.26)
and
1 Dp? 2, 10 p

T http://flash.uchicago.edu/website/home/.
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4.2. Positivity in multi-dimensions

Our scheme may be extended to a uniform Cartesian multidimensional grid by applying it sequentially in each direction.
This is known as the dimensional splitting method. In order to maintain second order accuracy, the order of the directions
must be reversed between each time step (Strang splitting). Dimensional splitting obviously preserves the positivity prop-
erties of the scheme. An alternative method is to add the numerical flux contributions of each direction at once. Such a
scheme may be written

Uttt =yt — % > AF, (4.28)
d

where d traverses the spatial dimensions, and AF? are some flux differences. We rewrite this as
1 dAt
n+1 n d
= E ———AF" ). 4.2
U P (U A ) (4.29)

Hence, if this scheme is positive in one dimension at CFL number Cj, it will be positive in d dimensions at CFL-number C; /d.
4.3. Numerical tests for multi-dimensional case

We now have several schemes to test in multidimensional settings. The time step is still chosen by (3.37). There are
mainly two different source term discretisations to consider: (i) The simple source S, yielding (4.12), denoted MHW?2,
and MHWP2 etc. (ii) The schemes using (4.14), resulting from the hybrid of S; and S,, are denoted MHWh and MHWPh
etc. Setting DW = 0 gives back the first order scheme G1 of [9].

4.3.1. One-dimensional smooth wave

First, we set up one-dimensional initial data with varying B,. Although the data are unphysical, they provide a simple and
adequate test for stability. A travelling wave solution to our Powell type system is given by u, B,B, and p + %Bi - %Bﬁ being
constant. It has wave speed u. We choose